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Objectives

l Estimate design loads for the prototype of a 40 kW 
Bergey system

l Furling model in question
l Hence the present objective...

l Determine sensitivity of furling behavior to 
aerodynamic model and turbine geometry
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ADAMS Model of a Bergey 40 kW System

l Structure
l Flexible blades (60 dof each)
l Thrust offset easily adjusted
l Free-yaw, free-furling (with stops)
l Linear furl damper (single-acting, unfurling motion only)
l Rigid tower
l Rigid drive train with generator torque/speed curve
l Properties do not match current design of Bergey system

l Aerodynamics
l AeroDyn aerodynamics model (version 11.25)

l Optional use of dynamic stall, dynamic inflow, and UIUC post-stall 
corrections

l Aerodynamic forces on tail via CL and CD lookup table
l No adjustment for rotor wake in this version
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Rotor Contributions to the Furling Moment

Steady wind (0.2 power law), 90 rpm, -20° yaw error
(Dynamic stall, Pitt & Peters dynamic inflow, no post-stall correction)
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Sensitivity of Yaw Moment to Aerodynamic 
Model
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l Steady wind (0.2 power law), 90 rpm, no tail force, fixed yaw and zero furl angle
l Normalized by 8 m/s case at zero yaw, with dynamic stall and dynamic inflow
l Color key: Blues ð No dynamic inflow; GoldsðWith dynamic inflow; Grayð No wake.

Last two series with zero yaw have zero thrust offset.  Dynamic stall and post-stall options 
also exercised

No thrust offset
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Sensitivity of Rotor Thrust to Aerodynamic 
Model

l Steady wind (0.2 power law), 90 rpm, no tail force, fixed yaw and zero furl angle
l Normalized by 8 m/s case at zero yaw, with dynamic stall and dynamic inflow
l Color key: Blues ð No dynamic inflow; GoldsðWith dynamic inflow; Grayð No wake.

Last two series with zero yaw have zero thrust offset.  Dynamic stall and post-stall options 
also exercised
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Predicted Furling Behavior

l Effect of doubling the tail area and the thrust offset
l IEC turbulence (2x10 minutes) with free yaw, free-furl, variable speed 

alternator, dynamic stall, dynamic inflow, and furling damper
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Turbulence Affects Mean Behavior

l Predictions in turbulent (IEC) and steady winds, both with 0.2 power law 
mean shear

l Free yaw, free-furl, variable speed alternator, dynamic stall, dynamic 
inflow, and single-acting furling damper
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Sensitivity to Tail Vane Size and Weight

l Effect of doubling the tail area and reducing the tail mass by one-half
l IEC turbulence (2x10 minutes) with free yaw, free-furl, variable speed 

alternator, dynamic stall, dynamic inflow, and furling damper
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Sensitivity to Airfoil Characteristics

Steady 10 m/s wind (0.2 power law), 90 rpm, fixed yaw and furl, no tail force
Dynamic stall, Pitt & Peters dynamic inflow, no post-stall correction
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Sensitivity to Forward Offset

l Yesterday we ran simulations using “ramp” winds and three 
values of forward offset (upwind distance from yaw axis to 
hub center)

l Used 9.4%, 13%, and 16% of rotor diameter
l Winds from 10 to 16 m/s in 1 m/s increments
l 0.1905 m lateral offset and 2° tilt (different from previous work)

l Saw virtually no effect on RPM, power, or loads.  See minor 
effect on furl and yaw angles

l This result is contrary to intuition and Bergey test 
experience.  We need to confirm the result with model 
checks
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Conclusions

l Furling is a result of small differences in large contributors 
to the net yaw moment

l Furling response is most sensitive to the thrust offset
l Tail area and mass are less important
l Airfoil selection and rotor speed can be important

l Dynamic inflow theory has a strong influence on predicted 
yaw moment when there is a small yaw error

l These factors make furling one of the most difficult 
situations to model

l These conclusions apply only to the rotor we modeled.  The 
Bergey 40 kW system and other systems may differ markedly
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Future Plans

l Model validation using Bergey 40-kW test results
l Model validation using Ames wind-tunnel test 

results for the UAE rotor (NREL support)
l Model validation using Whisper 900 test results 

from our Small Turbine Field Verification project 
(DOE support)


